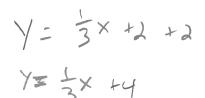
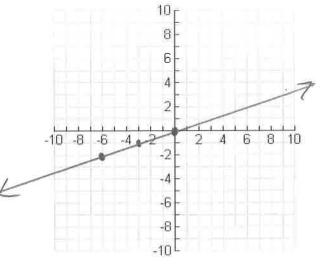


2-5 Practice 2

Date

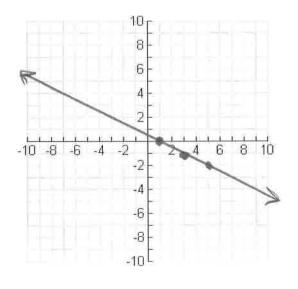

Graph each of the following lines by first giving the point and the slope. Then rewrite the equation in slope-intercept form.

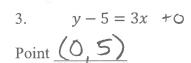


Point (-6, -2)

Slope 1/3

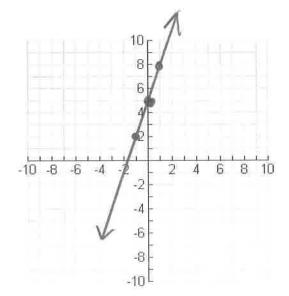
Slope-Intercept Form $\underline{y} = \frac{1}{3} \times + 2$




2.
$$y + 1 = -\frac{1}{2}(x - 3)$$

Point (3-1)

Slope $-\frac{1}{2}$


Slope-Intercept Form $y = -0.5 \times +0.5$

Slope 3

Slope-Intercept Form y = 3x + 5

4. Given a slope of -2 and the coordinate (3, -4) write the equation of the line in point-slope form.

5. Write the equation of a line through (-1, 5) and (-2, 8) in point-slope form. (Use (-1, 5) in your formula.)

ormula.)
$$M = \frac{8-5}{2+1} = \frac{3}{-1} = -3$$

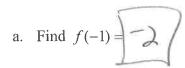
$$\sqrt{y-5} = -3(x+1)$$

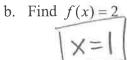
6. Write g(-5) = 2 as an ordered pair.

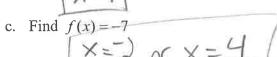
$$(-5,2)$$

- 7. Evaluate the function $j(x) = \frac{-20}{x} 6$ for $j(-5) = \frac{-20}{-5} = \frac{-20}{5}$
- 8. Evaluate the function $t(x) = 3x^2 x + 3$ for $t(-4) = 3(-4)^2 (-4) + 3$ = 3(16) + 4 + 3 = 55
- 9. Evaluate the function k(x) = 6x + 5 when k(x) = 23

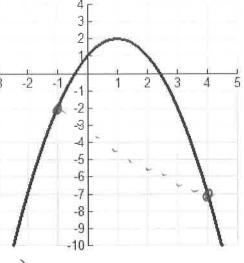
10. Evaluate the function $n(x) = x^2 - 5$ when n(x) = -1

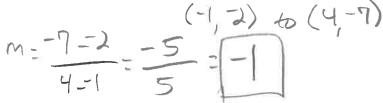

$$-1 = x^{2} - 5$$


$$4 = x^{2} - 5$$


$$= \text{each side}$$

$$X = +2$$


11. Given the graph of f(x) to the right.

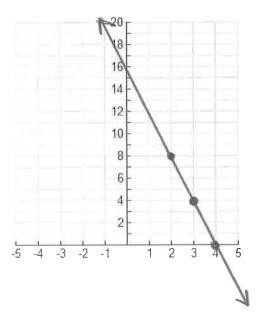


d. Find the average rate of change from x = -1, to 4.

12. Find the equation in slope-intercept form for the coordinates (3, 4) and (7, -12). Then graph it.

$$M = 4 - 12$$

$$3 - 7$$

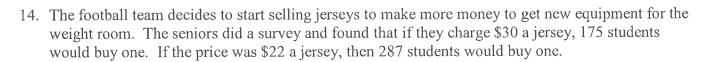

$$-4$$

$$4 = -4(3) + 6$$

$$16 = 6$$

$$16 = 6$$

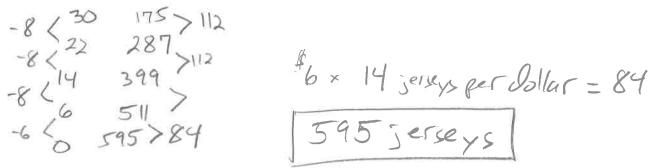
13. Solve the following: $\left(\frac{2}{3}x + 5 - (x - 7) = \frac{3}{4}\right)$


$$8 \times +60 - 12(x-7) = 9$$

$$8 \times +60 - 12x + 84 = 9$$

$$-4 \times +144 = 9$$

$$-4 \times = -135$$


$$\boxed{X = 33.75}$$

a. What is the independent variable? What is the dependent variable?

Independent; or ice b. What is the rate of change in jerseys sold as the price per jersey increases from \$22 to \$30?

c. Assume that sales are a linear function of price. Use the rate of change you found in Part a to reason about how many jerseys would be purchased for a price of \$0.

d. Use your answers to Parts a and b to write a rule for calculating expected sales j(x) for any price x in dollars.

$$5(x) = 595 - 14x$$

Use your rule to estimate the expected number of jerseys sold if the price was set at \$25.

What price should be charged if they want to sell 427 jerseys?

What is the practical domain? What is the practical range?

Domain (x):
Any number 20 Kange (x): 11hlo # (between 0 + 595